Abstract

This study investigates frame corner joints built of birch plywood plates and glulam elements connected via self-tapping screws. Analytical calculations based on the fastener group’s torsional moment resistance, the proposed fastener group’s elastic and post-elastic load-bearing criteria, and the design formulas in Eurocode 5 were performed to predict the connection capacity in both elastic and post-elastic stages. A combined action check formula was adopted to predict the capacity of birch plywood plates and glulam elements. Frame corner specimens constructed with three different plywood thicknesses were planned to study the influence on global behavior and rotational stiffness. The specimens were intentionally designed so that failure occurred either in plywood or in glulam, in order to examine the robustness and validity of analytical calculation models. Another supplementary test group with 21 mm plywood and fewer fasteners was also designed and tested, in which the plastic yield of fasteners was expected. The test results of this supplementary group served to calibrate the analytical model that predicts the elastic and post-elastic capacity of the connection group. As a result of the comparison, the analytical calculations gave reasonable predictions on the failure of plywood, glulam, and the capacity of the fastener group. Only when the exposed moment exceeded the post-elastic limit of the fastener group did the plastic yielding of fasteners become observable. Moreover, numerical finite element models adopting the foundation zone-modeling scheme were constructed, which were proven to capture all test configurations' linear loading stiffness satisfactorily.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call