Abstract

In this work we consider a general class of 2-dimensional hybrid systems. Assuming that the system possesses an attracting equilibrium point, we show that, when periodically driven with a square-wave pulse, the system possesses a periodic orbit which may undergo smooth and nonsmooth grazing bifurcations. We perform a semi-rigorous study of the existence of periodic orbits for a particular model consisting of a leaky integrate-and-fire model with a dynamic threshold. We use the stroboscopic map, which in this context is a 2-dimensional piecewise-smooth discontinuous map. For some parameter values we are able to show that the map is a quasi-contraction possessing a (locally) unique maximin periodic orbit. We complement our analysis using advanced numerical techniques to provide a complete portrait of the dynamics as parameters are varied. We find that for some regions of the parameter space the model undergoes a cascade of gluing bifurcations, while for others the model shows multistability between orbits of different periods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.