Abstract

Abstract We look at the periodic behaviour of the Earth’s glacial cycles and the transitions between different periodic states when either external parameters (such as $\omega $) or internal parameters (such as $d$) are varied. We model this using the PP04 model of climate change. This is a forced discontinuous Filippov (non-smooth) dynamical system. When periodically forced this has coexisting periodic orbits. We find that the transitions in this system are mainly due to grazing events, leading to grazing bifurcations. An analysis of the grazing bifurcations is given and the impact of these on the domains of attraction and regions of existence of the periodic orbits is determined under various changes in the parameters of the system. Grazing transitions arise for general variations in the parameters (both internal and external) of the PP04 model. We find that the grazing transitions between the period orbits resemble those of the Mid-Pleistocene-Transition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.