Abstract

5,10,15,20-Tetrakis(4-carboxyphenyl)-porphyrin-functionalized Fe3O4 nanocomposites (H2TCPP-Fe3O4) were successfully prepared by a simple two-step method. These nanocomposites exhibited ultra-high peroxidase-like activity compared with pure Fe3O4 nanoparticles. Colorless peroxidase substrate 3,3,5,5-tetramethylbenzidine (TMB) was changed by H2O2 to its blue oxidized state. Kinetic studies indicated that the H2TCPP-Fe3O4 nanocomposites exhibited enhanced affinity toward H2O2 with a higher catalytic activity than Fe3O4 nanoparticles alone. Results of a fluorescent probe suggested that the catalase-mimic activity of the H2TCPP-Fe3O4 nanocomposites effectively catalyzed the decomposition of H2O2 into hydroxyl radicals. A simple, sensitive, and selective visual and colorimetric method with TMB as the substrate was designed to detect glucose when combined with glucose oxidase. This colorimetric method can be used for colorimetric detection of H2O2 with a minimum detection limit of 1.07×10−6M and a dynamic range of 5×10−6mol·L−1 to 8×10−5mol·L−1. This method can also be used to detect glucose at a minimum detection limit of 2.21×10−6M and a dynamic range of 25×10−6mol·L−1 to 5×10−6mol·L−1. Furthermore, the robustness of the nanocomposites makes them suitable for a wide range of applications in biomedicine and environmental chemistry fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.