Abstract
Insulin and glucagon secreted from the pancreas with dynamic balance play a vital role in regulating blood glucose levels. Although distinct glucose-responsive insulin delivery systems have been developed, the lack of a self-regulated glucagon release module limits their clinical applications due to the potential risk of hypoglycemia. Here, we describe a transdermal polymeric microneedle patch for glucose-responsive closed-loop insulin and glucagon delivery to achieve glycemic regulation with minimized risk of hypoglycemia. The glucose-responsive phenylboronic acid units can bind to glucose to reversibly shift the net charge (from positive to negative) of the entire polymeric matrix within microneedles. Therefore, the release ratio of the negatively charged insulin and the positively charged glucagon analog from the patch can be dynamically tuned upon the fluctuation of blood glucose levels to realize glycemic homeostasis. In both chemically induced type 1 diabetic mouse and minipig models, this glucose-responsive dual-hormone microneedle patch demonstrated tight long-term regulation in blood glucose levels (>24 hours in minipigs).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have