Abstract

Cell cycle regulation in response to biochemical cues is a fundamental event associated with many diseases. The regulation of such responses in complex metabolic environments is poorly understood. This study reveals unknown aspects of the metabolic regulation of cell division in Schizosaccharomyces pombe. We show that changing the carbon source from glucose to lactic acid alters the functions of the cyclin-dependent kinase (CDK) Cdc2 and mitogen-activated protein kinase (MAPK) Sty1, leading to unanticipated outcomes in the behavior and fate of such cells. Functional communication of Cdc2 with Sty1 is known to be an integral part of the cellular response to aberrant Cdc2 activity in S. pombe. Our results show that cross-talk between Cdc2 and Sty1, and the consequent Sty1-dependent regulation of Cdc2 activity, appears to be compromised and the relationship between Cdc2 activity and mitotic timing is also reversed in the presence of lactate. We also show that the biochemical status of cells under these conditions is an important determinant of the altered molecular functions mentioned above as well as the altered behavior of these cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.