Abstract

Catalyzed H2O2 propagations (CHP) have demonstrated great potential in the remediation of chlorinated aliphatic hydrocarbons (CAHs) like trichloroethene (TCE) contaminated groundwater. However, the importation of highly unstable H2O2 into subsurface environment remains challenging. In this work, the in-situ H2O2 generation reaction between glucose oxidase (GOD) and glucose was applied in combination with Fe(II) to form the modified Fenton system (GMFs) and its performance in TCE oxidative degradation was investigated. The influence of reactant concentration as well as environmental factors like temperature and pH on the kinetics of TCE oxidation in GMFs were studied. At optimized conditions, about 78% TCE were removed within 8 h in GMFs, which remained effective over the temperature range of 15–30 °C and pH range of 3.6–6.0 (in acetate buffer). The in-situ H2O2 and OH generation capacity of GMFs were further investigated to elucidate their functional mechanism on TCE oxidation. Intermediate and product analysis indicated the near-complete release of chloride ion by TCE oxidation with few organic chlorinated intermediates detected. This work reveals the potential of GMFs for CAHs contaminated groundwater remediation through in-situ generation of reactive oxygen species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call