Abstract

Non-invasive blood glucose sensing can be achieved using mid-infrared spectroscopy, although no practical device based on this method has yet been developed. Here, we propose mid-infrared passive spectroscopic imaging for glucose measurements from a distance. Spectroscopic imaging of thermal radiation from the human body enabled, for the first time in the world, the detection of glucose-induced luminescence from a distance. In addition, glucose emission spectra of the wrist acquired at regular intervals up to 60 min showed that there was a strong correlation between the glucose emission intensity and blood glucose level measured using an invasive sensor. Thus, the new technology proposed here is expected to be applied to real-time monitoring of diabetic patients to detect hypoglycemic attacks during sleep and to detect hyperglycemia in a population. Moreover, this technology could lead to innovations that would make it possible to remotely measure a variety of substances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call