Abstract
Enhanced flux through the hexosamine biosynthesis pathway (HBP) induces insulin resistance and facilitates lipid storage through the up-regulation of enzyme mRNA levels. Both actions occur over several hours and require gene expression. We now identify a regulatory arm of the HBP that involves rapid allosteric activation of glycogen synthase (GS) and stimulation of glycogen biosynthesis (GBS). When insulin-pretreated adipocytes were exposed to 2 mM GlcN, incorporation of [14C]glucose into glycogen doubled by 10 min (t(1/2) of <5 min), whereas UDP-glucose levels were concomitantly decreased during this time (t(1/2) of 1.4 min; >90% depletion). Stimulation of GBS and depletion of UDP-glucose both correlated with an early and rapid rise in the levels of glucosamine-6-phosphate (GlcN-6-P), a known activator of GS. The lowering of GlcN-6-P levels by removing extracellular GlcN (>80% reduction by 45 min) was accompanied by the restoration of UDP-glucose levels. Prolonged GlcN treatment (20 min to 2 h) inhibited GBS, which corresponded to a massive intracellular accumulation of GlcN-6-P (t(1/2) of approximately 32 min; >1,400 nmol/g). From these data, we conclude the following. 1) GlcN treatment elevated intracellular GlcN-6-P levels within minutes, resulting in allosteric activation of GS, stimulation of GBS, and a reduction in steady-state levels of UDP-glucose due to increased precursor utilization. 2) Prolonged treatment with high concentrations of GlcN caused massive accumulation of GlcN-6-P that adversely affected cellular metabolism and reduced GBS. 3) The biphasic actions of GlcN on GBS may explain many of the discrepant reports on the role of the HBP in glycogen metabolism.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have