Abstract

BackgroundGlucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma. However, reduced efficacy in severe disease or exacerbations indicates a need to improve ICS actions.MethodsGlucocorticoid-driven transcriptomes were compared using PrimeView microarrays between primary human bronchial epithelial (HBE) cells and the model cell lines, pulmonary type II A549 and bronchial epithelial BEAS-2B cells.ResultsIn BEAS-2B cells, budesonide induced (≥2-fold, P ≤ 0.05) or, in a more delayed fashion, repressed (≤0.5-fold, P ≤ 0.05) the expression of 63, 133, 240, and 257 or 15, 56, 236, and 344 mRNAs at 1, 2, 6, and 18 h, respectively. Within the early-induced mRNAs were multiple transcriptional activators and repressors, thereby providing mechanisms for the subsequent modulation of gene expression. Using the above criteria, 17 (BCL6, BIRC3, CEBPD, ERRFI1, FBXL16, FKBP5, GADD45B, IRS2, KLF9, PDK4, PER1, RGCC, RGS2, SEC14L2, SLC16A12, TFCP2L1, TSC22D3) induced and 8 (ARL4C, FLRT2, IER3, IL11, PLAUR, SEMA3A, SLC4A7, SOX9) repressed mRNAs were common between A549, BEAS-2B and HBE cells at 6 h. As absolute gene expression change showed greater commonality, lowering the cut-off (≥1.25 or ≤ 0.8-fold) within these groups produced 93 induced and 82 repressed genes in common. Since large changes in few mRNAs and/or small changes in many mRNAs may drive function, gene ontology (GO)/pathway analyses were performed using both stringency criteria. Budesonide-induced genes showed GO term enrichment for positive and negative regulation of transcription, signaling, proliferation, apoptosis, and movement, as well as FOXO and PI3K-Akt signaling pathways. Repressed genes were enriched for inflammatory signaling pathways (TNF, NF-κB) and GO terms for cytokine activity, chemotaxis and cell signaling. Reduced growth factor expression and effects on proliferation and apoptosis were highlighted.ConclusionsWhile glucocorticoids repress mRNAs associated with inflammation, prior induction of transcriptional activators and repressors may explain longer-term responses to these agents. Furthermore, positive and negative effects on signaling, proliferation, migration and apoptosis were revealed. Since many such gene expression changes occurred in human airways post-ICS inhalation, the effects observed in cell lines and primary HBE cells in vitro may be relevant to ICS in vivo.

Highlights

  • Glucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma

  • Being a transcriptional activator, GR may bind to simple palindromic glucocorticoid response elements (GREs) or Glucocorticoid response element (GRE) half sites, and can interact with other transcription factors to enhance the expression of numerous genes [8,9,10]

  • Effective glucocorticoid concentrations in epithelial cell lines and primary human bronchial epithelial cells In prior studies, budesonide and dexamethasone elicited maximal responses at 100–300 nM or 300–1000 nM, respectively, on a simple 2 × GRE-driven luciferase reporter that was stably transfected into bronchial epithelial, BEAS-2B, or pulmonary type II epithelial, A549, cells [28, 29]

Read more

Summary

Introduction

Glucocorticoids act on the glucocorticoid receptor (GR; NR3C1) to resolve inflammation and, as inhaled corticosteroids (ICS), are the cornerstone of treatment for asthma. Glucocorticoids are the most effective anti-inflammatory drugs currently available for the treatment of chronic inflammation [1] They exert effects via the glucocorticoid receptor (GR; NR3C1), a ligand-activated transcription factor that is expressed in most cells [2]. Being a transcriptional activator, GR may bind to simple palindromic glucocorticoid response elements (GREs) or GRE half sites, and can interact with other transcription factors to enhance the expression of numerous genes [8,9,10] This effect is referred to as transactivation and applies to multiple anti-inflammatory genes, as well as genes relevant to the developmental and metabolic effects of glucocorticoids [11,12,13]. While transactivation and transrepression by GR may occur concurrently [14], their relative weights in the overall repressive effect of glucocorticoids requires clarification [15, 16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call