Abstract

BackgroundGMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. In the cytosol, GMEB1 interacts with and inhibits CASP8, but the molecular mechanism is currently unknown.MethodsHuman non-small cell lung cancer cells and 293FT cells were used to investigate the function of GMEB1/USP40/CFLARL complex by WB, GST Pull-Down Assay, Immunoprecipitation, Immunofluorescence and Flow cytometry analysis. A549 cells overexpressing green fluorescent protein and GMEB1 shRNA were used for tumor xenograft using female athymic nu/nu 4-week-old mice.ResultsWe found GMEB1 interacted with CFLARL (also known as c-FLIPL) in the cytosol and promoted its stability. USP40 targeted CFLARL for K48-linked de-ubiquitination. GMEB1 promoted the binding of USP40 to CFLARL. USP40 knockdown did not increase CFLARL protein level despite GMEB1 overexpression, suggesting GMEB1 promotes CFLARL stability via USP40. Additionally, GMEB1 inhibited the activation of pro-caspase 8 and apoptosis in non-small cell lung cancer (NSCLC) cell via CFLARL stabilization. Also, GMEB1 inhibited the formation of DISC upon TRAIL activation. CFLARL enhanced the binding of GMEB1 and CASP8. Downregulation of GMEB1 inhibited A549 xenograft tumor growth in vivo.ConclusionsOur findings show the de-ubiquitinase USP40 regulates the ubiquitination and degradation of CFLARL; and GMEB1 acts as a bridge protein for USP40 and CFLARL. Mechanistically, we found GMEB1 inhibits the activation of CASP8 by modulating ubiquitination and degradation of CFLARL. These findings suggest a novel strategy to induce apoptosis through CFLARL targeting in human NSCLC cells.

Highlights

  • Glucocorticoid modulatory element-binding protein 1 (GMEB1) was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene

  • SAHA treatment reduced GMEB1 and CFLARL protein levels in non-small cell lung cancer (NSCLC) cells To examine the interaction between GMEB1 and CFLARL, we measured the protein levels in six NSCLC lines: A549, H1792, Calu-1, H1299, H157, and H460

  • We described the interaction among GMEB1, USP40 and CFLARL (Fig. 9)

Read more

Summary

Introduction

GMEB1 was originally identified via its interaction with GMEB2, which binds to the promoter region of the tyrosine aminotransferase (TAT) gene and modulates transactivation of the glucocorticoid receptor gene. Glucocorticoid modulatory element-binding protein 1 (GMEB1) was originally identified as a nuclear protein with a molecular weight of 88 kDa [1,2,3]. GMEB1 interacts with GMEB2 and binds to the promoter sequence glucocorticoid modulatory element (GME) of the tyrosine aminotransferase (TAT) gene to modulate glucocorticoid receptor transactivation [4]. GMEB1 binds to pro-caspases and inhibits their activation and cell apoptosis. It is still unknown how GMEB1 does this [5,6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call