Abstract

Backgroundβ-Glucans obtained from fungi, such as baker's yeast (Saccharomyces cerevisiae)-derived β-glucan (BBG), potently activate macrophages through nuclear factor κB (NFκB) translocation and activation of its signaling pathways. The mechanisms by which β-glucans activate these signaling pathways differ from that of lipopolysaccharide (LPS). However, the effects of β-glucans on LPS-induced inflammatory responses are poorly understood. Here, we examined the effects of BBG on LPS-induced inflammatory responses in RAW264.7 mouse macrophages. MethodsWe explored the actions of BBG in RAW264.7 macrophages. ResultsBBG inhibited LPS-stimulated nitric oxide (NO) production in RAW264.7 macrophages by 35–70% at concentrations of 120–200μg/ml. BBG also suppressed mRNA and protein expression of LPS-induced inducible NO synthase (iNOS) and mitogen-activated protein kinase phosphorylation, but not NFκB activation. By contrast, a neutralizing antibody against dectin-1, a β-glucan receptor, did not affect BBG-mediated inhibition of NO production. Meanwhile, BBG suppressed Pam3CSK-induced NO production. Moreover, BBG suppressed LPS-induced production of pro-and anti-inflammatory cytokines, including interleukin (IL)-1α, IL-1ra, and IL-27. ConclusionsOur results indicate that BBG is a powerful inhibitor of LPS-induced NO production by downregulating iNOS expression. The mechanism involves inactivation of mitogen-activated protein kinase and TLR2 pathway, but is independent of dectin-1. General significanceBBG might be useful as a novel agent for the chemoprevention of inflammatory diseases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call