Abstract
All commercial chemiluminescence (CL) assays are conducted with either glow or flash CL of eye-visible waveband from chemical luminophores. Herein, glow and flash, as well as waveband adjustable CL from the same nanoparticle luminophore of thiol-capped CuInS2@ZnS nanocrystals (CIS@ZnS-Thiol), are proposed via extensively exploiting the differed redox nature of CL triggering reagents. Taking thiosalicylic acid (TSA) as the model thiol-capping agent, the electron-injection-initiated charge transfer between CIS@ZnS-TSA and reductant can bring out efficient glow CL while the hole-injection-initiated charge transfer between CIS@ZnS-TSA and oxidant can give off obvious flash CL under optimum conditions. The maximum emission wavelength for CL of CIS@ZnS-TSA is adjustable from 730 nm to 823 nm via employing different triggering agents. Promisingly, the coexistent reductant of N2H4·H2O and oxidant of H2O2 can be employed as dual triggering reagents to trigger eye-visible and highly efficient flash CL from CIS@ZnS-TSA. The maximum emission intensity for flash CL of CIS@ZnS-TSA/N2H4-H2O2 is 101-fold greater than the glow CL of CIS@ZnS-TSA/N2H4 and 22-fold greater than the flash CL of CIS@ZnS-TSA/H2O2, respectively. The flash CL from CIS@ZnS-TSA/N2H4-H2O2 is qualified for highly sensitive and selective CL immunoassay in a commercialized typical procedure with the entire operating process manually terminated within 35 min.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.