Abstract
C1q-TNF-related protein-9 (CTRP9) is increasingly recognized as a promising cardioprotective adipocytokine, which regulates biological processes like vascular relaxation, proliferation, apoptosis, and inflammation. We recently showed that CTRP9 enhanced carotid plaque stability by reducing pro-inflammatory cytokines in macrophages. However, the underlying molecular mechanism of CTRP9 on anti-inflammatory response in macrophages still remains unclear. We demonstrated that globular CTRP9 (gCTRP9) significantly reduced oxidized low-density lipoprotein (oxLDL)-induced tumor necrosis factor alpha and monocyte chemoattractant protein 1 expression by suppressing nuclear factor-κB phosphorylation and nuclear translocation in RAW 264.7 macrophages. Treatment with gCTRP9 strikingly increased the level of phosphorylated adenosine monophosphate-activated protein kinase (AMPK). AMPK inhibitor abolished the anti-inflammatory effects of gCTRP9. Moreover, gCTRP9 increased the expression of adiponectin receptor 1 (AdipoR1). Downregulation of AdipoR1 by siRNA could abrogate the activation of AMPK and the anti-inflammatory effects of gCTRP9. These results suggested that gCTRP9 protected RAW 264.7 macrophages from oxLDL via AMPK activation in an AdipoR1 dependent fashion.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have