Abstract
AbstractFollowing the abstract setting of [8] and using the global results of [2], global wellposedness and regularity results are proved for the solutions of quasi‐linear symmetric hyperbolic systems with bounded coefficients which are regularized by a convolution in the space variables with a regularizing function. In the case of unbounded regularized coefficients, local existence of classical solutions is proved, as well as uniqueness and regularity of (not necessarily existing) global weak solutions with initial value in a Sobolev space. As the regularizing function tends to Dirac's δ, local‐in‐time convergence to the classical solution of the non‐regularized problem is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.