Abstract

We study an initial-boundary value problem to the one-dimensional model for planar non-resistive magnetohydrodynamics. By virtue of the effective viscous flux and an analogue, the material derivative and the structure of the equations, global well-posedness of strong solutions is obtained provided that the initial density is bounded below away from vacuum. Based on this, global solvability of strong solutions is shown with allowance of initial vacuum, where natural compatibility conditions for the initial data are required. The results are obtained without any restriction to the size of the initial data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.