Abstract
<abstract><p>In this paper, the small initial data global well-posedness and time decay estimates of strong solutions to the Cauchy problem of 3D incompressible liquid crystal system with general Leslie stress tensor are studied. First, assuming that $ \|u_0\|_{\dot{H}^{\frac12+\varepsilon}}+\|d_0-d_*\|_{\dot{H}^{\frac32+\varepsilon}} $ ($ \varepsilon &gt; 0) $ is sufficiently small, we obtain the global well-posedness of strong solutions. Moreover, the $ L^p $–$ L^2 $ ($ \frac32\leq p\leq2 $) type optimal decay rates of the higher-order spatial derivatives of solutions are also obtained. The $ \dot{H}^{-s} $ ($ 0\leq s &lt; \frac12 $) negative Sobolev norms are shown to be preserved along time evolution and enhance the decay rates.</p></abstract>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.