Abstract
In this paper the global well-posedness in $L^2$ and $H^m$ of the Cauchy problem is proved for nonlinear Schrodinger-type equations. This we do by establishing regular Strichartz estimates for the corresponding linear equations and some nonlinear a priori estimates in the framework of Besov spaces. We further establish the regularity of the $H^m$-solution to the Cauchy problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.