Abstract

We consider a simple nonlinear hyperbolic system modeling the flow of an inviscid fluid. The model includes as state variable the mass density fraction of the vapor in the fluid, and then, phase transitions can be taken into consideration; moreover, phase interfaces are contact discontinuities for the system. We focus on the special case of initial data consisting of two different phases separated by an interface. We find explicit bounds on the (possibly large) initial data in order that weak entropic solutions exist for all times. The proof exploits a carefully tailored version of the front-tracking scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.