Abstract

The environmental sustainability of cellulosic ethanol production from rice straw in India is conducted using life cycle assessment (LCA). Greenhouse gas (GHG) emissions, net energy ratio (NER) and net energy balance (NEB) are studied for ethanol production system using two diverse pretreatment technologies, i.e. dilute acid (DA) and steam explosion (SE) followed by separate hydrolysis and fermentation. 1ton of rice straw is the reference flow of study and 1MJ transportation fuel is the functional unit while comparing the results with gasoline. The inventory data is collected based on several experiments conducted at our pilot plant and is a novel contribution to country specific LCA. Using DA and SE, the ethanol yields from the processing of 1ton straw are 239 and 253L and life cycle GHG emissions are 292 and 288kgCO2eq./ton straw respectively. The results indicated that production of enzyme used in hydrolysis is the major contributor to GHG emissions in both DA (54%) and SE (57%) methods of ethanol production. The net energy input during the life cycle of ethanol is 1736 and 1377MJ/ton straw in DA and SE respectively. The major GHG emissions and energy benefits are obtained using lignin produced in the plant to generate electricity resulting in displacement of the coal based electricity. With a higher xylose recovery in the SE, it gives larger amount of ethanol and also generates more surplus electricity. Enzyme production and its use are identified as GHG emission and energy consumption hotspot in the ethanol production process. While comparing the results with gasoline, DA and SE resulted in a reduction of 77 and 89% GHG emissions and NER of 2.3 and 2.7 respectively. The E5 blending would reduce GHG emissions by 4.3% (DA) and 4.8% (SE) whereas; E20 blend would lead to a reduction of 17.4% (DA) and 18.8% (SE) respectively. Sensitivity analysis indicates that with every 12.5% increase in the price of rice straw from the base case, there is a 2.3% increase in GHG emissions and vice versa. 1FPU/g WIS increase during hydrolysis gives 2.9% increase in ethanol production, but at the same time there is an increase of 5% emissions from enzyme production. The results of the study conclude that cellulosic ethanol production technology in India is sustainable from GHG reduction and energy efficiency perspective.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.