Abstract
We consider a hyperbolic ordinary differential equation perturbed by a nonlinearity which can be singular at a point and in particular this includes MEMS type equations. We first study qualitative properties of the solution to the stationary problem. Then, for small value of the perturbation parameter as well as initial value, we establish the existence of a global solution by means of the Lyapunov function and we show that the omega limit set consists of a solution to the stationary problem. For strong perturbations or large initial values, we show that the solution blows up. Finally, we discuss the relationship between upper bounds of the perturbation parameter for the existence of time-dependent and stationary solutions, for which we establish an optimal threshold.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.