Abstract

We consider both stationary and time-dependent solutions of the 3-D Navier–Stokes equations (NSE) on a multi-connected bounded domain Ω ⊂ R 3 with inhomogeneous boundary values on ∂ Ω = Γ; here Γ is a union of disjoint surfaces Γ 0 , Γ 1 , … , Γ l . Our starting point is Leray’s classic problem, which is to find a weak solution u ∈ H 1 ( Ω ) of the stationary problem assuming that on the boundary u = β ∈ H 1 / 2 ( Γ ). The general flux condition ∑ j = 0 l ∫ Γ j β · n d S = 0 must be satisfied due to compatibility considerations. Early results on this problem including the initial results in (J. Math. Pures Appl. 12 (1933) 1–82) assumed the more restrictive flux condition ∫ Γ j β · n d S = 0 for each j = 1 , … , l. More recent results, of which those in (An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. II 1994 Springer–Verlag) and (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are particularly representative, assume only the general flux condition in exchange for size restrictions on the data. In this paper we also assume only the general flux condition throughout, and for virtually the same size restrictions on the data as in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) we obtain the existence of a weak solution that matches that found in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) when the assumptions imposed here and those assumed in (In Lectures on the Analysis of Nonlinear Partial Differential Equations 2013 237–290 Int. Press) are both met; additionally we demonstrate that this solution is unique. For slightly stronger size restrictions we obtain the existence and uniqueness of solutions of both Leray’s problem and global mild solutions of the corresponding time-dependent problem, while showing that both the stationary and time-dependent solutions we construct are a bit stronger than weak solutions. The settings in which we establish our results allow us to culminate our discussion by showing that our time-dependent solutions converge to each other exponentially in time, so that in particular our stationary solutions are asymptotically stable. We also discuss additional features which allow for data of increased size on certain domains, including those which are thin in a generalized sense.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call