Abstract
Nickel (Ni) is an important metal in modern infrastructure and technology, with major uses in stainless steel, alloys, electroplating and rechargeable batteries. Economic Ni resources are found in either sulfide or laterite-type ores. Although the majority of economic resources are contained in laterite ores, the bulk of historic Ni production has been derived from sulfide ores since laterites require more complex processing. To meet future demand for Ni, there is an increasing amount of Ni being mined from laterite ores—leading to increasing energy and greenhouse gas emission costs for Ni production. In many of the major Ni fields of the world, environmental impacts have also been significant, especially in Sudbury in Canada and the Taimyr and Kola Peninsulas in Russia. A major gap in the literature remains on historical trends in global Ni mining, especially with respect to primary aspects such as production, known economic resources and ore grades and type. This paper compiles and analyses a wide array of data on global Ni mining, presenting a coherent picture of major historical trends and the current industry configuration. The paper includes unique historical data sets for major Ni fields, especially the Sudbury Basin and Thompson fields in Canada and the Kambalda field in Australia. By understanding these critical ‘mega-trends’ in the Ni industry, it is possible to better understand unfolding global issues, such as environmental impacts, greenhouse gas emissions, climate change and potential industry responses, and whether ‘peak nickel’ is a viable concept and the implications these issues have for Ni production and demand. The data, trends and issues synthesized in this paper therefore provide a compelling picture of the Ni industry, and should help to inform current research and policy directions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.