Abstract
ROS (Reactive Oxygen Species) has a dual role in tumorigenesis. Some cancers have high ROS conditions, and others have low ROS. TNBC thrives on high ROS compared to other Breast Cancer subtypes. Several antioxidant enzymes catalyze the detoxification of reactive oxygen species and prevent free radicals from damaging DNA and accumulation of mutation. Curcumin, a polyphenol dietary supplement, acts as a potent antioxidant, is known to reduce inflammation, and has anticancer properties. Here, we aim to understand alterations in the transcriptome (miRNA and mRNA expression) induced by ST09 in breast cancer cell lines. We identified an antioxidant system that is upregulated in breast cancer cell lines. Among the antioxidant enzymes regulated by miRNA was GPX3. A novel miRNA-mRNA antioxidant axis, miR-197-5p/GPX3, was observed in the TNBC cell line. We further validated the regulation of GPX3 by miRNA using luciferase assay. GPX3 overexpression, knockdown, and activity assay indicated the anti-tumorigenic role of GPX3 in the TNBC cell line. Further, treatment of TNBC xenograft with ST09 showed tumor reduction in vivo. ST09 potentiates the effect of standard-of-care (SOC) drug Cisplatin in vivo. ST09 can be exploited as a single chemotherapeutic agent or in combination treatment modalities, reducing the dosage of potent drugs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have