7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1016/j.knosys.2023.111010
Copy DOIJournal: Knowledge-Based Systems | Publication Date: Sep 20, 2023 |
Citations: 2 | License type: cc-by-nc-nd |
Linear discriminant analysis (LDA) is a powerful supervised dimensionality reduction method for analysing high-dimensional data. However, LDA cannot use locality information in data, which makes LDA degrade dramatically in performance on multimodal data. A number of LDA variants have been proposed to exploit locality information in data, including subclass-based LDAs. We discover a problem with these variants, which is that subclasses are selected on a within-class basis without considering other classes. This causes the loss of important information at class boundaries. In this paper, we present a novel variant of subclass-based LDA, Global Subclass Discriminant Analysis (GSDA). Unlike other subclass-based LDAs, GSDA selects subclasses from global clusters that may cross class boundaries, thus utilising within-class information and between-class information. More specifically, GSDA applies an effective clustering algorithm to the whole data to construct global clusters. It then utilises the local structure refining strategy on these global clusters to construct subclasses. Finally, GSDA learns a representative data subspace by maximising inter-subclass distance and minimising intra-subclass distance simultaneously. GSDA is extensively evaluated on a wide range of public datasets through comparison with the state-of-the-art LDA algorithms. Experimental results demonstrate its superiority in terms of accuracy and run times.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.