Abstract

We consider the partial differential equations proposed by Shliomis to model the dynamics of an incompressible viscous ferrofluid submitted to an external magnetic field. The Shliomis system consists of the incompressible Navier‐Stokes equations, the magnetization equations, and the magnetostatic equations. The magnetization equations is of Bloch type, and no regularizing term is added. We prove the global existence of unique strong solution to the initial boundary value problem for the system in a bounded domain, with the small initial data and external magnetic field but without any restrictions on the physical parameters. The novelty of the analysis is to introduce a linear combination of magnetic fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.