Abstract
In this paper we are concerned with the differential system proposed by Shliomis to describe the motion of an incompressible ferrofluid submitted to an external magnetic field. The system consists of the Navier–Stokes equations, the magnetization equations and the magnetostatic equations. No regularizing term is added to the magnetization equations. We prove the local existence of unique strong solution for the Cauchy problem and establish a finite time blow-up criterion of strong solutions. Under the smallness assumption of the initial data and the external magnetic field, we prove the global existence of strong solutions and derive a decay rate of such small solutions in L 2 -norm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.