Abstract

We consider (d 0 + 2)-dimensional configurations with global strings in two extra dimensions and a flat metric in d 0 dimensions, endowed with a warp factor e 2γ depending on the distance l from the string center. All possible regular solutions of the field equations are classified by the behavior of the warp factor and the extradimensional circular radius r(l). Solutions with r → ∞ and r → const > 0 as l → ∞ are interpreted in terms of thick brane-world models. Solutions with r → 0 as l → l c > 0, i.e., those with a second center, are interpreted as either multibrane systems (which are appropriate for large enough distances l c between the centers) or as Kaluza-Klein-type configurations with extra dimensions invisible due to their smallness. In the case of the Mexican-hat symmetry-breaking potential, we build the full map of regular solutions on the (ɛ, Γ) parameter plane, where ɛ acts as an effective cosmological constant and Γ characterizes the gravitational field strength. The trapping properties of candidate brane worlds for test scalar fields are discussed. Good trapping properties for massive fields are found for models with increasing warp factors. Kaluza-Klein-type models are shown to have nontrivial warp factor behaviors, leading to matter particle mass spectra that seem promising from the standpoint of hierarchy problems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call