Abstract

We analyse, from a mathematical point of view, the global stability of equilibria for models describing the interaction between infectious agents and humoral immunity. We consider the models that contain the variables of pathogens explicitly. The first model considers the situation where only a single strain exists. For the single strain model, the disease steady state is globally asymptotically stable if the basic reproductive ratio is greater than one. The other models consider the situations where multiple strains exist. For the multi-strain models, the disease steady state is globally asymptotically stable. In the model that does not explicitly contain an immune variable, only one strain with the maximum basic reproductive ratio can survive at the steady state. However, in our models explicitly involving the immune system, multiple strains coexist at the steady state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.