Abstract

In this work an HIV-1 infection model with nonlinear incidence rate and distributed intracellular delays and with humoral immunity is investigated. The disease transmission function is assumed to be governed by general incidence rate f(T, V)V. The intracellular delays describe the time between viral entry into a target cell and the production of new virus particles and the time between infection of a cell and the emission of viral particle. Lyapunov functionals are constructed and LaSalle invariant principle for delay differential equation is used to establish the global asymptotic stability of the infection-free equilibrium, infected equilibrium without B cells response, and infected equilibrium with B cells response. The results obtained show that the global dynamics of the system depend on both the properties of the general incidence function and the value of certain threshold parameters R 0 and R 1 which depends on the delays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.