Abstract
This paper mainly investigates the global asymptotic stabilities of two HIV dynamics models with two distributed intracellular delays incorporating Beddington-DeAngelis functional response infection rate. An eclipse stage of infected cells (i.e. latently infected cells), not yet producing virus, is included in our models. For the first model, it is proven that if the basic reproduction number $R_0$ is less than unity, then the infection-free equilibrium is globally asymptotically stable, and if $R_0 $ is greater than unity, then the infected equilibrium is globally asymptotically stable. We also obtain that the disease is always present when $R_0 $ is greater than unity by using a permanence theorem for infinite dimensional systems. What is more, a n-stage-structured HIV model with two distributed intracellular delays, which is the extensions to the first model, is developed and analyzed. We also prove the global asymptotical stabilities of two equilibria by constructing suitable Lyapunov functionals.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have