Abstract
In this paper, we are concerned with the global wellposedness of 2-D density-dependent incompressible Navier–Stokes equations (1.1) with variable viscosity, in a critical functional framework which is invariant by the scaling of the equations and under a nonlinear smallness condition on fluctuation of the initial density which has to be doubly exponential small compared with the size of the initial velocity. In the second part of the paper, we apply our methods combined with the techniques in Danchin and Mucha (2012) [10] to prove the global existence of solutions to (1.1) with constant viscosity and with piecewise constant initial density which has small jump at the interface and is away from vacuum. In particular, this latter result removes the smallness condition for the initial velocity in a corresponding theorem of Danchin and Mucha (2012) [10].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.