Abstract
In this study, several regression models were employed to estimate global solar radiation from commonly available meteorological data such as sunshine duration, temperature, precipitation, and cloud cover for 34 meteorological stations of Bangladesh. The models studied were calibrated using five meteorological stations that are providing global solar radiation as well as other meteorological data. Estimated values were also compared with measured values in terms of statistical evaluation indicators like the coefficient of determination $$(R^{2}),$$ mean percentage error, mean bias error, root mean square error (RMSE), mean absolute relative error, and t statistic. The statistical analysis showed that the models assessed were well suited to accurately estimate the solar potential. Sunshine duration-based models performed best, and cloud cover-based models performed worst. Among 45 developed models to predict solar radiation, the models with RMSE value lower than 0.2 are recommended for use.
Highlights
Among fossil fuels, Bangladesh has only natural gas that is used in power generation in the country (Ahiduzzaman and Islam 2011)
To derive better models for solar radiation estimation, in this study we have proposed few models combining the effects of sunshine duration and other meteorological parameters
The empirical models for solar radiation estimation are given in Tables 2 and 7
Summary
Bangladesh has only natural gas that is used in power generation in the country (Ahiduzzaman and Islam 2011). According to Bangladesh Power Development Board (BPDB) (2015), Bangladesh has a total installed capacity of 11,532 MW and among which 62.76 % of the total generation comes from natural gas. The estimated reserve of natural gas which is around 13.75 Tcf would meet the country’s demand till 2015. After that there will be a shortage of gas supply which would rise to 4421 MMcfd by 2025. An additional 8.35 Tcf supply of gas is to be met by some other means (Ahiduzzaman and Islam 2011). There is only a single hilly area situated in the southern
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.