Abstract
In this article we continue with the study of multivariate smooth general singular integral operators over R N , N ≥ 1 , regarding their simultaneous global smoothness preservation property with respect to the L p norm, 1 ≤ p ≤ ∞ , by involving multivariate higher order moduli of smoothness. Also we study their multivariate simultaneous approximation to the unit operator with rates. The multivariate Jackson type inequalities obtained are almost sharp containing elegant constants, and they reflect the high order of differentiability of the engaged function. In the uniform case of global smoothness we prove optimality. At the end we list the multivariate Picard, Gauss–Weierstrass, Poisson–Cauchy and Trigonometric singular integral operators as applicators of our general theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.