Abstract

AbstractThe NASA Global‐scale Observations of the Limb and Disk ultraviolet imaging spectrograph performs observations of upper atmosphere airglow from the sunlit disk and limb of the Earth, in order to infer quantities such as the composition and temperature of the thermosphere. To interpret the measurements, the observational and solar illumination geometry must be considered. We use forward models of upper atmosphere density and composition, photoelectron impact, airglow emissions, radiative transfer, and line‐of‐sight integration, to describe the expected observations, and here test those calculations against observations near the terminator, and near the limb. On the nightside of the terminator, broad regions of faint airglow are seen, particularly near the winter solstice. These are caused by photoelectrons generated in magnetically conjugate areas in the other hemisphere that are still illuminated, transported along field lines, and then precipitated back into the atmosphere. Model calculations demonstrate that this process is the source of the emission, and obtain good agreement with its morphology and intensity. In some regions, the observed emissions are not as bright as the model simulations. Some of the reduction in electron flux is explained by changes in magnetic field strength; in other cases, particularly at high magnetic latitude, the cause is unknown, but must occur along extended field lines that reach into the plasma sheet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.