Abstract

The magnetoelectric heating is investigated on an ECR plasma device. The ion temperatures are measured by ion sensitive probe (ISP) before and after magnetoelectric heating. The influences of bias voltage of electrical ring, magnet field and pressure on ion temperature and the efficiency of ion heating are studied. The results indicate that the whole heating of the plasma is accomplished through the magnetoelectric heating of the ions in the sheath of the electric ring and the radial transport of the heated ions. The ion temperature in the axial area increases with the bias voltage of electric ring, and their relationship is nonlinear. The ion temperature increases more than 20 eV when the bias voltage is 1000 V. A heating efficiency is achieved to be as high as 2%2.5% and increases with the bias voltage increasing. The magnetic field strength plays an important role in the limitation and heating of the ions. The efficiency of the magnetoelectric heating increases with the increase of the magnetic field strength when the magnetic field strength changes from 6.310-2T to 8.710-2T. The efficiency of the magnetoelectric heating increases with the pressure decreasing when the pressure chenges in a range of 0.020.8Pa.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call