Abstract

In this paper, we propose a set of saturated controllers with variable gains to solve the regulation problem for robot manipulators in joint space. These control schemes deliver torques inside the prescribed limits of servomotors. The gamma of variable gains is formed by continuous, smooth, and differentiable functions of the joint position error and velocity of the manipulator. A strict Lyapunov function is proposed to demonstrate globally asymptotic stability of the closed-loop equilibrium point. Finally, the functionality and performance of the proposal are illustrated via simulation results and comparative analysis against Proportional-Derivative (PD) control scheme on a two-degrees-freedom direct-drive robot manipulator.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.