Abstract

Normalizing flows (NF) are powerful generative models with increasing applications in augmenting Monte Carlo algorithms due to their high flexibility and expressiveness. In this work we explore the integration of NF in the diagrammatic Monte Carlo (DMC) method, presenting an architecture designed to sample the intricate multidimensional space of Feynman's diagrams through dimensionality reduction. By decoupling the sampling of diagram order and interaction times, the flow focuses on one interaction at a time. This enables one to construct a general diagram by employing the same unsupervised model iteratively, dressing a zero-order diagram with interactions determined by the previously sampled order. The resulting NF-augmented DMC method is tested on the widely used single-site Holstein polaron model in the entire electron-phonon coupling regime. The obtained data show that the model accurately reproduces the diagram distribution by reducing sample correlation and observables' statistical error, constituting the first example of global sampling strategy for connected Feynman's diagrams in the DMC method. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.