Abstract

We present results for the solution of the large polaron Fr\"ohlich Hamiltonian in 3-dimensions (3D) and 2-dimensions (2D) obtained via the Diagrammatic Monte Carlo (DMC) method. Our implementation is based on the approach by Mishchenko [A.S. Mishchenko et al., Phys. Rev. B 62, 6317 (2000)]. Polaron ground state energies and effective polaron masses are successfully benchmarked with data obtained using Feynman's path integral formalism. By comparing 3D and 2D data, we verify the analytically exact scaling relations for energies and effective masses from 3D$\to$2D, which provides a stringent test for the quality of DMC predictions. The accuracy of our results is further proven by providing values for the exactly known coefficients in weak- and strong coupling expansions. Moreover, we compute polaron dispersion curves which are validated with analytically known lower and upper limits in the small coupling regime and verify the first order expansion results for larger couplings, thus disproving previous critiques on the apparent incompatibility of DMC with analytical results and furnishing useful reference for a wide range of coupling strengths.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.