Abstract
This paper establishes the global existence and regularity of solutions to a two-dimensional (2D) tropical climate model (TCM) with fractional dissipation. The inviscid counterpart of this model was derived by Frierson, Majda and Pauluis [8] as a model for tropical geophysical flows. This model reflects the interaction and coupling among the barotropic mode u, the first baroclinic mode v of the velocity and the temperature θ. The systems with fractional dissipation studied here may arise in the modeling of geophysical circumstances. Mathematically these systems allow simultaneous examination of a family of systems with various levels of regularization. The aim here is the global regularity with the least dissipation. We prove two main results: first, the global regularity of the system with (−Δ)βv and (−Δ)γθ for β>1 and β+γ>32; and second, the global regularity of the system with (−Δ)βv for β>32. The proofs of these results are not trivial and the requirements on the fractional indices appear to be optimal. The key tools employed here include the maximal regularity for general fractional heat operators, the Littlewood–Paley decomposition and Besov space techniques, lower bounds involving fractional Laplacian and simultaneous estimates of several coupled quantities.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have