Abstract

This article presents a new approach to solve the equations of flow in heterogeneous porous media by using random walks on regular lattices. The hydraulic head is represented by computational particles which are spread globally from the lattice sites according to random walk rules, with jump probabilities determined by the hydraulic conductivity. The latter is modeled as a realization of a random function generated as a superposition of periodic random modes. One- and two-dimensional numerical solutions are validated by comparisons with analytical manufactured solutions. Further, an ensemble of divergence-free velocity fields computed with the new approach is used to conduct Monte Carlo simulations of diffusion in random fields. The transport equation is solved by a global random walk algorithm which moves computational particles representing the concentration of the solute on the same lattice as that used to solve the flow equations. The integrated flow and transport solution is validated by a good agreement between the statistical estimations of the first two spatial moments of the solute plume and the predictions of the stochastic theory of transport in groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.