Abstract

Abstract This paper is concerned with numerical methods for a coupled system of two partial differential equations (PDEs), modeling flow and transport of a contaminant in porous media. This coupled system, arising in modeling of flow and transport in heterogeneous porous media, includes two types of equations: an elliptic and a diffusion-convection equation. We focus on miscible flow in heterogeneous porous media. We use the mixed finite element method for the Darcy flow equation over triangles, and for the concentration equation, we use nonconforming finite volume methods in unstructured mesh. Finally, we show the existence and uniqueness of a solution of this coupled scheme and demonstrate the effectiveness of the methodology by a series of numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.