Abstract

Neural networks are an indispensable model class for many complex learning tasks. Despite the popularity and importance of neural networks and many different established techniques from literature for stabilization and robustification of the training, the classical concepts from robust statistics have rarely been considered so far in the context of neural networks. Therefore, we adapt the notion of the regression breakdown point to regression neural networks and compute the breakdown point for different feed-forward network configurations and contamination settings. In an extensive simulation study, we compare the performance, measured by the out-of-sample loss, by a proxy of the breakdown rate and by the training steps, of non-robust and robust regression feed-forward neural networks in a plethora of different configurations. The results indeed motivate to use robust loss functions for neural network training.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.