Abstract

We carry out a compact phase space analysis of a non-canonical scalar field theory whose Lagrangian is of the form F(X)-V(ϕ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(X)-V(\\phi )$$\\end{document} within general relativity. In particular, we focus on a kinetic term of the form F(X)=βXm\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(X)=\\beta X^m$$\\end{document} (m≠1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m\ e 1/2$$\\end{document}) with power-law potential V0ϕn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V_0 \\phi ^n$$\\end{document} and exponential potential V0e-λϕ/MPl\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V_0 e^{-\\lambda \\phi /M_{Pl}}$$\\end{document} of the scalar field. The Cuscuton case m=1/2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$m=1/2$$\\end{document} where the scalar field is non-dynamical is left out of consideration. The main aim of this work is to investigate the genericity of nonsingular bounce in these models and to investigate the cosmic future of the bouncing cosmologies when they are generic. A global dynamical system formulation that is particularly suitable for investigating nonsingular bouncing cosmologies is used to carry out the analysis. We show that when F(X)=βXm\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$F(X)=\\beta X^m$$\\end{document} (β<0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\beta <0$$\\end{document}), nonsingular bounce is generic for a power law potential V(ϕ)=V0ϕn\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V(\\phi ) = V_0 \\phi ^n$$\\end{document} only within the parameter range 12<m<1,n<2mm-1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left\\{ \\frac{1}{2}<m<1,\\,n<\\frac{2\\,m}{m-1}\\right\\} $$\\end{document} and for an exponential potential V(ϕ)=V0e-λϕ/MPl\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V(\\phi ) = V_0 e^{-\\lambda \\phi /M_{Pl}}$$\\end{document} only within the parameter range 12<m≤1\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\left\\{ \\frac{1}{2}<m\\le 1\\right\\} $$\\end{document}. Except in these cases, nonsingular bounce in these models is not generic due to the non-existence of global past or future attractors. Our analysis serves to show the importance of a global phase space analysis to address important questions about nonsingular bouncing solutions, an idea that may and must be adopted for such solutions even in other theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call