Abstract

A parallel fast annealing evolutionary algorithm (PFAEA) was presented and applied to optimize Lennard-Jones (LJ) clusters. All the lowest known minima up to LJ(116) with both icosahedral and nonicosahedral structure, including the truncated octahedron of LJ(38), central fcc tetrahedron of LJ(98), the Marks' decahedron of LJ(75)(-)(77), and LJ(102)(-)(104), were located successfully by the unbiased algorithm. PFAEA is a parallel version of fast annealing evolutionary algorithm (FAEA) that combines the aspect of population in genetic algorithm and annealing algorithm with a very fast annealing schedule. A master-slave paradigm is used to parallelize FAEA to improve the efficiency. The performance of PFAEA is studied, and the scaling of execution time with the cluster size is approximately cubic, which is important for larger scale energy minimization systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.