Abstract

The influence of parameters on system states for parametric problems in power systems is to be evaluated. These parameters could be renewable generation outputs, load factor, etc. Polynomial approximation has been applied to express the nonlinear relationship between system states and parameters, governed by the nonlinear and implicit equations. Usually, sampling-based methods are applied, e.g., data fitting methods and sensitivity methods, etc. However, the accuracy and stability of these methods are not guaranteed. This paper proposes an innovative method based on Galerkin method, providing global optimal approximation. Compared to traditional methods, this method enjoys high accuracy and stability. IEEE 9-bus system is used to illustrate its effectiveness, and two additional studies including a 1648-bus system are performed to show its applications to power system analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.