Abstract

The refining industry is the third-largest source of global greenhouse gas (GHG) emissions from stationary sources, so it is at the forefront of the energy transition and net zero pathways. The dynamics of contributors in this sector such as crucial countries, leading enterprises, and key emission processes are vital to identifying key GHG emitters and supporting targeted emission reduction, yet they are still poorly understood. Here, we established a global sub-refinery GHG emission dataset in a long time series based on life cycle method. Globally, cumulative GHG emissions from refineries reached approximately 34.1 gigatons (Gt) in the period 2000-2021 with an average annual increasing rate of 0.7%, dominated by the United States, EU27&UK, and China. In 2021, the top 20 countries with the largest GHG emissions of oil refining accounted for 83.9% of global emissions from refineries, compared with 79.5% in 2000. Moreover, over the past two decades, 53.9-57.0% of total GHG emissions came from the top 20 oil refining enterprises with the largest GHG emissions in 12 of these 20 countries. Retiring or installing mitigation technologies in the top 20% of refineries with the largest GHG emissions and refineries with GHG emissions of more than 0.1 Gt will reduce the level of GHG emissions by 38.0%-100.0% in these enterprises. Specifically, low-carbon technologies installed on furnaces and boilers as well as steam methane reforming will enable substantial GHG mitigation of more than 54.0% at the refining unit level. Therefore, our results suggest that policies targeting a relatively small number of super-emission contributors could significantly reduce GHG emissions from global oil refining.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call