Abstract

AbstractEl Niño‐Southern Oscillation (ENSO) is the leading mode of interannual climate variability that affects climate and society across the world. However, our understanding of ENSO variability is currently lacking due to short instrumental observations, which limit our confidence in predicting its future occurrence and impact. In this study, we use the nested principal component regression method to reconstruct the ENSO index based on a global‐scale proxy network of stable oxygen isotopes (δ18O). We account for the teleconnection changes that influence proxy records corresponding to different ENSO phases by using the isotope‐enabled Community Earth System Model. According to the precipitation δ18O–ENSO relationship, we reconstruct the ENSO index over the last eight hundred years based on the first two leading modes of the selected proxy records. The skill of ENSO reconstruction improves with an increased number of δ18O series distributed over the ENSO‐affected regions. Our new reconstruction shows high consistency with existing ENSO reconstructions during periods of strong ENSO variability, indicating that the global proxy records capture enhanced teleconnection signals during the phase of strong ENSO amplitude. There is a weak El Niño response 1 year after the large volcanic eruptions in our reconstruction, and the amplitude of ENSO is significantly correlated with volcanic intensity. The strengthened energetic interactions between the ocean and atmosphere following large volcanic eruptions result in enhanced sea surface temperature variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call