Abstract

The stability of mRNAs undergoing translation has long been a controversial question. Here, we systematically investigate links between mRNA turnover and translation during the endoplasmic reticulum (ER) stress response, a process during which protein synthesis is potently regulated. cDNA array-based approaches to assess the stability and translational status of each mRNA were devised. First, ER stress-triggered changes in mRNA stability were studied by comparing differences in steady-state mRNA levels with differences in gene transcription. Second, changes in translational status were monitored by studying ER stress-induced shifts in the relative distribution of each mRNA along sucrose gradients. Together, the array-derived data reveal complex links between mRNA stability and translation, with all regulatory groups represented: both stabilized and destabilized mRNAs were found among translationally induced as well as translationally suppressed mRNA collections. Remarkably, however, the subset of stabilized mRNAs was prominently enriched in translationally suppressed transcripts, suggesting that ER stress was capable of causing the stabilization of mRNAs associated with a global reduction in protein synthesis. The cDNA array-based approach described here can be applied to global analyses of mRNA turnover and translation and can serve to investigate subsets of mRNAs subject to joint posttranscriptional control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.