Abstract

This paper describes a new unconditionally stable numerical method for the full-wave physical modeling of semiconductor devices by a combination of the finite-difference Laguerre time-domain (FDLTD) and alternative direction implicit finite-difference time-domain (ADI-FDTD) approaches. The unconditionally stable method by using FDLTD scheme for the electromagnetic model and semi-implicit ADI-FDTD approach for the active model leads to a significant decrease in the full-wave simulation time. Numerical simulations of an example transistor and a power amplifier show the efficiency of presented method for the full-wave simulation of mm-wave active circuits. Copyright © 2012 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.